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Abstract We study cooperative navigation for robotic swarms in the context of
a general event-servicing scenario. In the scenario, one or more events need to
be serviced at specific locations by robots with the required skills. We focus on
the question of how the swarm can inform its members about events, and guide
robots to event locations. We propose a solution based on delay tolerant wire-
less communications: by forwarding navigation information between them, robots
cooperatively guide each other towards event locations. Such a collaborative ap-
proach leverages on the swarm’s intrinsic redundancy, distribution, and mobility.
At the same time, the forwarding of navigation messages is the only form of co-
operation that is required. This means that the robots are free in terms of their
movement and location, and they can be involved in other tasks, unrelated to the
navigation of the searching robot. This gives the system a high level of flexibility
in terms of application scenarios, and a high degree of robustness with respect
to robot failures or unexpected events. We study the algorithm in two different
scenarios, both in simulation and on real robots. In the first scenario, a single
searching robot needs to find a single target, while all other robots are involved
in tasks of their own. In the second scenario, we study collective navigation: all
robots of the swarm navigate back and forth between two targets, which is a typi-
cal scenario in swarm robotics. We show that in this case, the proposed algorithm
gives rise to synergies in robot navigation, and lets the swarm self-organize into
a robust dynamic structure. The emergence of this structure improves navigation
efficiency, and lets the swarm find shortest paths.
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Michael Bonani, Stéphane Magnenat, Francesco Mondada
EPFL, ME A3 484 (Bâtiment ME), Station 9, 1015 Lausanne, Switzerland
E-mail: michael.bonani@epfl.ch, stephane.magnenat@mavt.ethz.ch,
francesco.mondada@epfl.ch, philippe.retornaz@epfl.ch

Marco Dorigo, Rehan O’Grady, Carlo Pinciroli, Vito Trianni
IRIDIA, CoDE, ULB, Avenue F. Roosevelt 50, 1050 Brussels, Belgium
E-mail: mdorigo@ulb.ac.be, rogrady@ulb.ac.be, cpinciro@ulb.ac.be, vtrianni@ulb.ac.be



2 F. Ducatelle, G. A. Di Caro, et al.

Keywords Swarm robotics, cooperative navigation, self-organization

1 Introduction

In this paper, we present a new algorithm for cooperative navigation in swarm
robotics. With navigation, we refer to the task of finding a collision-free path for
a robotic system to travel from one place to another. Swarm robotics is the study
of large groups of relatively simple robots that interact and cooperate with each
other in order to jointly solve tasks that are outside each robot’s own capabili-
ties (Dorigo and Sahin, 2004). Such task solving typically relies on self-organization

and emergence, meaning that swarm’s organization comes from within the system
(i.e., is not imposed from outside), and comes about in a decentralized way, from
local interactions between individual robots (De Wolf and Holvoet, 2005). Algo-
rithms in swarm robotics mostly rely on cooperation and simple interactions between
robots, rather than on complex individual behaviors that require powerful sensory
capabilities. Concretely, in the context of navigation, this means that the focus
is on cooperative navigation, where robots guide each other, rather than on the
use of maps (see, e.g., (Mirats Tur et al., 2009)) or map-building strategies (e.g.,
simultaneous localization and mapping (Durrant-Whyte and Bailey, 2006)), or the
use of an external infrastructure (e.g., a communication network or a localization
system (O’Hara et al., 2008)).

Many studies in the context of swarm robotics navigation consider a scenario
where robots need to move back and forth between two locations, e.g. to transport
items from one place to another. Most of this work is based on indirect commu-
nication between robots, and is inspired by the foraging behavior of certain types
of ants in nature (Werger and Matarić, 1996; Wodrich and Bilchev, 1997; Sharpe
and Webb, 1999; Garnier et al., 2007; Fujisawa et al., 2008; Nouyan et al., 2009;
Ducatelle et al., 2011a). This behavior relies on stigmergic communication, which
is a form of indirect communication through local modification and sensing of the
environment. Specifically, ants moving between the nest and a food source leave
a chemical substance, called pheromone, in the environment, which attracts other
ants and guides them to the food. The interesting aspect is that the collective
process of pheromone laying and following reinforces the most efficient paths, so
that eventually the shortest path appears as a consequence of the swarm’s collec-
tive actions (Deneubourg et al., 1990; Bonabeau et al., 1999). This is an example
of emergent self-organized behavior. An important difficulty with the use of this
pheromone-based navigation model in robotics is the practical implementation of
the indirect communication, in terms of a satisfactory artificial replacement for
the chemical pheromone used by ants.

In this work, we propose a new approach for navigation in swarm robotics
based on direct communication between robots, and fully relying on cooperation
and simple interactions. We consider a general problem scenario where a swarm
of robots equipped with wireless communication devices needs to execute multiple
tasks in a confined area. The tasks correspond to events that need to be serviced
in given locations. Each event can be taken care of by one or more robots with
the appropriate skills to service the event. For instance, a task can consist in
transporting multiple items, one at a time, from one location to the base location
of the swarm, or vice versa. Another practical example are fire events, that require
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robots capable to transport water to move back and forth between multiple water
sources and fire locations.

A full solution to this class of problems involves mechanisms for detecting the
events and announcing them to the swarm, for the allocation of robots to events,
and for guiding robots with the appropriate skills to deal with a specific event to
event locations. In this work we focus on robot navigation: how can a robot navigate
to event’s location after the event has been advertised and the robot has assigned
itself to the task following the reception of event notification. At this aim, we
assume that, for each event in the environment, there is one robot T of the swarm
that has detected the event and found its location. The robot remains static at
that location, and announces its presence (i.e., the presence of the task) through
periodic wireless message broadcasts. We refer to T as a target robot. A robot S of
the swarm that can service the task, needs to navigate to a given target robot T ,
which is, in the general case, outside the range of its sensors and communication
devices. We investigate how S can find T through cooperative support from the
other robots in the swarm when no environment maps or external localization
systems are available to the robots. An important aspect in our problem definition
is that these other robots can be involved in tasks that are independent of the
navigation of S. They do not adapt their movements to guide S in its navigation
task, but they do offer help through communication. This means that the behavior
of the remaining robots of the swarm does not depend on the navigation of S to T .
In fact, these robots may be involved in any task of their own, including a different
navigation task, to another target T ′, or even to the same target T . In this way,
depending on the behavior of the different robots and the nature of the events, a
variety of different scenarios of practical interest can be obtained, and the swarm
can fully exploit the existing individual capabilities to perform multiple tasks and

swarm navigation in parallel. In this respect, our scenario significantly differs from
the typical ones previously considered in swarm navigation, in which some robots
adapt their own behavior (or even stand still playing the role of environment
landmarks) to support the navigation of other robots, or, more in general, where
all robots are involved in solving a single task cooperatively.

We deal with the described problem scenario proposing an algorithm based on
mobile wireless network communications. Each robot A coming in communication
range of a target robot T , and receiving its periodic broadcasts, stores information
about T in a local data structure, which we call a navigation table. This information
consists of a sequence number, indicating the relative age of the message, and a
distance value, which is an estimate of the navigation distance to T . As A moves
around, it updates the information in its navigation table, and periodically broad-
casts it to neighboring robots. This way, navigation information can travel through
the (possibly intermittently connected) mobile ad hoc network (MANET) formed
among the swarm of robots by being carried on board of the mobile robots. A
searching robot S receiving new navigation information from a robot B, compares
this new information to previously received navigation information, and moves
towards B’s location if the new information is better.

This way, navigation information spreads throughout the MANET in a wireless
multi-hop fashion, but without requiring to establish routing paths, as is common
in the area of delay tolerant networking (DTN) (Fall, 2003; Karlsson et al., 2008).
On the other hand, a searching robot S makes use of the navigation information
to physically move from robot to robot locations towards the target, similar to
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how a data packet follows a multi-hop route through a MANET (Royer and Toh,
1999; Di Caro et al., 2005).

The proposed algorithm is relatively simple, but very powerful and versatile.
When applied in different scenarios, it can give rise to different swarm-level move-
ment patterns, while each time providing efficient navigation. Since the given prob-
lem description is very general, without losing generality, we restrict our study to
two scenarios, which we refer to as single robot navigation and collective navigation.
They are representative of a large number of scenarios of both practical and the-
oretical interest. The two scenarios have been implemented and studied both in
simulation and using real robots, the foot-bots (Dorigo et al., 2013; Bonani et al.,
2010) (see Section 3.1). Simulation tests assume robots with the characteristics of
the foot-bots.

In the single robot navigation scenario, a single robot S needs to find a single
target robot T , which remains static. An example application of this scenario could
be that T is indicating a place where a certain task needs to be performed, and
only S has the capabilities required for this task. All other robots of the swarm
execute random movements, expressing that they are involved in other tasks, which
are independent of S’s navigation. The goal is to show that using the proposed
algorithm, they can offer support to S’s navigation without having to adapt their
own movements. We investigate the performance of the system with varying swarm
sizes, environments, and random movement patterns. We show that the approach
is efficient, scalable, and robust to robot failures.

The collective navigation problem is essentially the frequently studied scenario
in swarm robotics, where all robots of the swarm navigate back and forth between
two targets T and T ′. Compared to the single robot navigation problem of the
first scenario, we show that collective navigation gives rise to synergies, improving
navigation performance. In particular, the concurrent execution of communica-
tion based navigation by all robots lets the swarm self-organize, and a collective
movement pattern emerges in the swarm behavior. This self-organized movement
improves navigation efficiency and is robust with respect to the swarm size. More-
over, it allows to find shortest paths in cluttered environments. This means that
collective navigation based on our communication-based system has similar prop-
erties to ant-inspired pheromone-based navigation, while avoiding the problem of
how to implement stigmergic communication. Besides showing a new approach for
collective navigation, this is also an example of the general applicability of our
simple navigation system.

In terms of requirements, our approach only relies on wireless message com-
munication between robots to find paths for navigation, leveraging on simple in-
teractions, cooperation, and self-organization, as is common in swarm robotics.
However, to make our message-passing approach feasible, we require some specific
properties from the robots’ wireless communication device. First of all, the device
should provide line-of-sight communication, so that communication links can be
related to obstacle-free paths. Second, the device should be able to link received
messages to relative position information (angle and distance) about their sender,
so that robots can follow paths detected through communication. Similar require-
ments were formulated in (O’Hara and Balch, 2004), where a network of embedded
communication nodes is used to guide a single robot to a target. Similar to that
work, we address these requirements using an infrared range-and-bearing (IrRB)
communication system, of which implementations exist for various robots (Pugh
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and Martinoli, 2006; Gutiérrez et al., 2008; Roberts et al., 2009; Bonani et al.,
2010), and in particular for the foot-bot robots that we used in the experiments.

The rest of this paper is organized as follows. In Section 2, we describe the com-
munication aided navigation algorithm. In Section 3, we study the working of this
algorithm in the scenario of single robot navigation. In Section 4, we investigate
the scenario of collective navigation: we study how the system self-organizes, and
how it is able to find shortest paths. After that, in Section 5 we describe the imple-
mentation of our system on real robots, and in Section 6 we discuss related work.
Some of the work presented here appeared earlier in conference papers (Ducatelle
et al., 2009, 2011b).

2 Communication aided navigation

In this section, we explain the communication aided navigation system. We first
describe the details of the algorithm executed by the robots. Then, we take a look
at the swarm as a whole and explain how the joint execution of the proposed
algorithm by the robots can support effective navigation.

2.1 The navigation algorithm

The navigation system we propose is loosely based on routing algorithms used in
MANETs. Using wireless communication, the robots of the swarm form a MANET
among them. The general idea is to build up navigation information through com-
munication in this MANET, and use it to guide a searching robot from hop to
hop to its target, similar to how routing information is gathered in a MANET
and used to forward data packets to their destination. All robots in the swarm
maintain a table with navigation information about all known target robots. The
information about a target T contains an estimate of the navigation distance to
T , as well as a sequence number that serves as an indication of the relative age
of the information. Each robot periodically broadcasts the content of its table to
its neighbors, which update their table based on the received information. This
way, navigation information spreads throughout the swarm via wireless commu-
nication. Robots also update the distance estimates in their table based on their
own movements, using odometry information. This way, navigation information
can travel between parts of the MANET which are not connected through wireless
communication, by being carried on board of the mobile robots, as is common in
the area of delay tolerant networking (DTNs) (Fall, 2003; Karlsson et al., 2008),
without requiring establishing and maintaining routing paths, which could be prob-
lematic in MANETs. This is important to let the algorithm operate both in dense
and sparse robot swarms. To navigate to a given target robot T , a searching robot
S continuously monitors all received navigation information. Each time it receives
improved navigation information (where the quality of navigation information is
defined based on its distance and age, as explained below), it moves towards the
neighbor robot that sent this information. This way, S moves between the robots
of the swarm until it reaches T . In what follows, we describe the different aspects
of this system in detail. An overview of how they tie together is given in Algo-
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rithm 1, which shows the sequence of actions executed by a robot in each control
step.

Algorithm 1 Communication based navigation: the actions executed at each con-
trol step by each robot A.

1: /* Update local distance estimates */
2: for (Each target T in navigation table) do
3: Update distance information d(A, T ) for T based on A’s moved distance
4: end for
5: /* Process received messages */
6: for (Each received message from a neighbor robot B) do
7: for (Each target T in the message) do
8: Receive distance d′(B, T ) and sequence number s′(T ) from B
9: Compute d′(A, T ) := d(A,B) + d′(B, T )

10: /* Update navigation tables if new information is better */
11: if ((s′(T ) > s(T )) OR ((s′(T ) == s(T )) AND (d′(A, T ) < d(A, T )))) then
12: Replace information for T in table: s(T ) := s′(T ) and d(A, T ) := d′(A, T )
13: end if
14: /* Update navigation behavior if new information is better */
15: if (A is searching for target T ) then
16: if ((s′(T ) > s∗(T )) OR ((s′(T ) == s∗(T )) AND (d′(B, T ) < d∗(T )))) then
17: Replace current navigation information: s∗(T ) := s′(T ) and d∗(T ) := d′(B, T )
18: Move towards B’s position
19: end if
20: end if
21: end for
22: end for
23: /* Send message */
24: if (Time to send update) then
25: if (The local robot A is a target) then
26: Increase sequence number s(A) for target A in navigation table
27: end if
28: for (Each target T in (subset of) table) do
29: Add information s(T ) and d(A, T ) to message
30: end for
31: Broadcast message
32: end if

Navigation tables and message broadcasts. The navigation information about a tar-
get T present in a robot A’s navigation table consists of a sequence number s(T ),
indicating the relative age of the information, and a distance d(A, T ), indicating
the distance traveled by the information between T and A. Since navigation in-
formation can only travel via line-of-sight wireless communication or on board
of moving robots, d(A, T ) is an estimate for the navigation distance between A

and T . At the start of swarm deployment, all robots have an empty table. When
a robot T becomes a target robot (i.e., it discovers a target location and starts
announcing it), it puts an entry about itself in its table. In this entry, both the
sequence number s(T ) and the distance d(T, T ) are set to 0. At periodic intervals,
robots broadcast the content of their table to neighbors. When T broadcasts the
information about itself, it first increases sequence number s(T ) in its table by 1.
The distance d(T, T ) is broadcast without modification. Another robot A broad-
casting information about T does not modify s(T ), so that the sequence number
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marks the relative time when the information left T . The use of sequence numbers
to mark the relative age of messages was inspired by MANET routing protocols
such as DSDV (Perkins and Bhagwat, 1994). The size of each robot’s navigation
table, and hence of its update messages, depends only on the number of targets in
the environment. If bandwidth is limited, robots select a subset of targets to send
updates about, in a round-robin fashion.

Processing received broadcasts. Any robot A receiving a broadcast from another
robot B processes the entries for all targets T in the message. It reads the received
sequence number s′(T ) and distance d′(B, T ) from the message. On the basis of
d′(B, T ), it calculates a new estimate for its own distance to T , d′(A, T ), by adding
the distance d(A,B) between itself and B (as measured at message reception with
the IrRB communication system). Then, A compares the new values, s′(T ) and
d′(A, T ), to the information about T in its own table, s(T ) and d(A, T ). The new
information is considered better if either s′(T ) > s(T ) (the new information is more
recent), or s′(T ) = s(T ) and d′(A, T ) < d(A, T ) (the new information is equally
recent, but indicates a shorter path). In that case, the information in the table is
replaced by the new information.

Updating distance estimates. If A moves around without receiving new updates
about T , the distance d(A, T ) in its table needs to be updated for it to remain an
estimate of the navigation distance to T . Therefore, as A is moving, it measures
its moved distance through odometry, and adds this to d(A, T ). This way, d(A, T )
grows and remains a measure of the distance traveled by the navigation informa-
tion. The direction of A’s movement is not taken into account, so that d(A, T )
is not necessarily the shortest distance to T . However, it is an upper bound of
the shortest obstacle-free path (since A per definition moved over an obstacle-free
path). Using this mechanism, the navigation system can work in sparsely con-
nected swarms: navigation information can bridge gaps in network connectivity
by traveling on board of moving robots.

Using the received messages for navigation. A searching robot S moves towards the
location of the neighbor from which it receives the best navigation information
about its target T . The information s(T ) and d(A, T ), received from a neighbor A, is
considered better than the information s′(T ) and d′(B, T ), received from a neighbor
B, if s(T ) > s′(T ) (A’s information is more recent), or if s(T ) = s′(T ) and d(A, T ) <
d′(B, T ) (A’s navigation distance to T is less than B’s). In case A’s information is
the best, S stores s(T ) and d(A, T ) as s∗(T ) and d∗(T ) respectively, and also A’s
relative location LA, as measured by the IrRB system at the moment of message
reception. Then S moves towards LA using odometry. Note that S does not adapt
its goal in case A moves: only A’s location LA at the moment of reception of the
navigation information is important. Any newly received navigation information
(either from A again, or from another neighbor) is compared to s∗(T ) and d∗(T ).
If the information received from a neighbor C is better, S moves towards C’s
location LC . This can happen either before S had reached its previous goal LA,
or after that. In the former case, S just abandons its previous goal in favor of the
new one. In the latter case, S is faced with a period in which it has no direction
to go to (between the arrival at LA and the reception of the new information).
In this case, we consider two possible strategies: S can either wait statically at
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LA, or start performing random movements until new information is received. We
refer to the former strategy as navigation with stopping (NwS), and to the latter as
navigation with random (NwR); we compare the two strategies in Section 3. The
repeated moves let S follow the best navigation information through the network.
When S eventually receives a message directly from T , it goes straight to T and
finishes the search. Finally, we point out that we let the searching robot S approach
any location (be it that of another robot A or of the target T ) from the right (by
aiming for a location slightly to the right of LA). This is to avoid head-on collisions
between robots (especially useful when two searchers move towards each other, as
in the scenario of Section 4).

2.2 The system’s dynamics

The proposed navigation algorithm lets a searching robot S move towards the
location of neighbors that have information about its target T that is better than
what S had previously received, where “better” information means either more
recent information (higher sequence number), or information that has traveled
over a shorter path from T (lower estimated distance). Here, we discuss how such
moves can bring S closer to T .

The issue is relatively straightforward in scenarios where robot density is high
and the swarm forms a connected MANET including S and T . In this case, the
periodic local broadcasting of messages by the robots of the swarm lets each new
message from T (each new sequence number) flood the MANET. Flooding spreads
as an expanding ring from T , and new navigation information reaches S first
over the shortest path through the network. Such flooding mechanisms are the
same as those used by reactive MANET routing algorithms to define the shortest
path for data forwarding (see, e.g. (Perkins and Royer, 1999)). Hence, when S

moves towards the most recent navigation information, it follows the shortest
path available for data routing in the MANET. Since T is continuously sending new
messages (with increasing sequence numbers), the path followed by S is constantly
adapted to changes in the MANET topology. The correspondence between the
shortest path for data routing and the shortest path for navigation depends on
the density and spread of robots in the environment (see examples in Figure 1).

When we consider scenarios where the robot distribution is sparser, the MANET
formed among the swarm may no longer be connected. At this point, a new mes-
sage sent out by T does not immediately flood throughout the swarm: to reach
disconnected parts of the MANET, a message needs to be carried there by mo-
bile robots. This means that message spreading depends on a combination of
robot mobility and message communication. Several studies investigated message
spreading in sparsely connected MANETs (Spyropoulos et al., 2004; Groenevelt
et al., 2005; Zhang et al., 2007; Jacquet et al., 2010; Klein et al., 2010). In case
robot density is not extremely sparse, so that robots can communicate with others
relatively frequently, new messages spread from T in an expanding wave-like prop-
agation (Jacquet et al., 2010; Klein et al., 2010). Such propagation is similar to the
form of spreading obtained through flooding (but slower, as part of the spreading
is based on robots carrying the message away from T ). As a consequence, if S
goes towards the most recent information (or the information that has traveled
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Fig. 1 Shortest communication path between two robots in a MANET. The area is 20×20
m2, and the communication range is 3 m. The searcher is placed at the bottom left and the
target at the top right. The correspondence with the shortest path for navigation (the straight
line) depends on robot placement and density: we show an example with 80 robots (left) and
one with 200 robots (right).

the shortest distance), it moves into the direction of the expanding wave, and can
therefore be expected to make steps in T ’s direction.

In the case of very sparse swarms, robots only occasionally meet each other.
In this situation, robot mobility is the main factor defining information spreading:
each robot A that meets T picks up a new message and carries it around the
environment. If A does not meet any other robot, its sequence number s(T ) and
distance estimate d(A, T ) are defined by respectively the time when A met T , and
the total length of the movements made by A since then. When S meets A, it moves
towards A if A’s navigation information is better than what S has received before.
Whether this effectively brings S closer to T depends on the relationship between
the time/distance that A has traveled from T , and its real distance to T . This
obviously depends on the movement patterns followed by A. Nevertheless, several
studies in the MANET literature have shown that in general, for most reasonable
mobility patterns, there is a positive correlation between the travel time/distance
and the actual distance (Dubois-Ferriere et al., 2003; Spyropoulos et al., 2008).
This positive correlation has been used to support message forwarding, e.g., based
on node encounter histories (Dubois-Ferriere et al., 2003; Grossglauser and Vetterli,
2006).

To investigate more in detail the properties of this correlation and its depen-
dence on the number of robots in the network, we performed simulation tests
considering both one and multiple moving robots (the specific characteristics of
the robot models and of the simulation environment are discussed in the next
section). In the first set of experiments, we placed a target robot T in the middle
of an uncluttered environment of 20×20 m2, and let a single other robot A move
according to a random direction mobility model (see Section 3 for details about the
simulator and the mobility model). The robots have a communication range of
3 m. We did 10 tests of 10000 s each. At each time step of 0.1 s, we measured
the difference between the sequence number on board of A and the most recent
sequence number sent out by T . We call this the sequence number gap. It is the
relative age of the information on board of A, and measures the elapsed time since
A last encountered T . We also measured at each time step the real distance be-
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Fig. 2 Navigation information (y-axis) against the distance from the target (x-axis): on the
left the sequence number gap and on the right the estimated distance. We plot data for the case
of 1 robot and 20 robots. The shaded areas around the curves indicate the standard deviation.
See main text for explanation.

tween A and T . In Figure 2, we plot the average sequence number gap against
the real distance. The graph shows that the sequence number gap is on average
an increasing function of the distance: when A has a lower sequence number gap,
it has a higher probability of being closer to T . This means that if a searching
robot S moves towards a robot announcing a newer sequence number, it will, in
expected value, move closer to the target. However, it must be noted that the
curve in Figure 2 levels out at high distances from T ; also, it has a large standard
deviation. This means that the information is quite unreliable: many of S’s moves
will still go in a wrong direction.

The situation improves dramatically when we increase the swarm size. We
performed the same tests with 20 randomly moving robots. In this case, we get a
density of one robot per 20 m2. Even though each robot can communicate over
an area of more than 28 m2, this still corresponds to a relatively sparse network
connectivity, in which a MANET with randomly placed nodes normally does not
provide end-to-end communication connectivity. This is due to the random loca-
tions of the robots; see, e.g., (Dousse et al., 2002) for a thorough study of the
relation between density and connectivity in a MANET. We get therefore in the
earlier described situation where the swarm information spreads both through mo-
bility and communication: the robots update each other’s sequence number when
they meet, and new sequence numbers spread faster through the area, according
to a wave-like propagation. This makes the information much more reliable. As
shown in Figure 2, the average sequence number gap decreases, and we get a much
smoother relation between the sequence number gap and the distance to T , with
lower standard deviation. In tests with higher numbers of robots (not shown here),
both the average and the standard deviation of the sequence number gap further
decrease.

We also performed these same experiments using the estimated navigation dis-
tance d(A, T ), rather than the sequence number. This gives very similar behavior,
as shown in Figure 2. This means that both parts of the navigation information,
the sequence number and the estimated navigation distance, are positively corre-
lated to the actual distance to the target, and are therefore both useful navigation
measures. In our algorithm we use the sequence number and the estimated dis-
tance in combination, because this gives the best results. One could, however, also



Cooperative Navigation in Robotic Swarms 11

use them separately, e.g., to get a simpler system, which uses less communication
bandwidth.

3 Single robot navigation

In this section, we study the single robot navigation scenario. As explained in
Section 2, the scenario consists of a robot S searching for a static target robot
T . All other robots of the swarm are involved in tasks of their own, and perform
movements that are unrelated to the navigation of S. To obtain such independent
movements, we use random mobility patterns.

We investigate the performance of the communication-based navigation system
under varying conditions, using experiments performed in simulation. In what
follows, we first describe the simulator and the robots we used in these experiments.
After that, we study the system in an uncluttered environment, to show its basic
working. Next, we investigate the influence of the movement patterns of the robots
of the swarm, performing tests with varying mobility models. Then, we study
cluttered environments, and show that the system can work even in highly complex
environments, such as mazes. Finally, we investigate situations where two paths
of different length are available, and show that our algorithm has a preference for
the shortest path.

As performance metrics, we consider the average navigation time of the servicing
robot S moving between target locations. In order to have a baseline reference of
how good this time is, in the results we also plot the navigation time of a robot
following the shortest path between the targets.1

All throughout this section, we show that our communication-based algorithm
lets the swarm support navigation in a fully autonomous way, without relying on
external information or infrastructure, and using only very simple interactions and
capabilities. Moreover, the robots of the swarm can support the searching robot’s
navigation without the need to adapt their own movements. This allows a lot of
freedom in possible applications of this approach.

3.1 The robots and the simulator

All tests presented in this and in the next section are executed using a simulated
model of the foot-bot, a small ground robot developed within the Swarmanoid
project (Dorigo et al., 2013) (http://www.swarmanoid.org) on the basis of the
marXbot platform (Bonani et al., 2010). The tests with real robots, presented in
Section 5, use this same robot.

The foot-bot is shown in Figure 3. It has a diameter of about 17 cm and it
is about 29 cm high. It moves on the ground using a combination of tracks and
wheels, for increased stability. It is quite a powerful robot, carrying various sensors
and actuators, including two cameras, a rotating distance scanner, a gripper, etc.
For the work presented here, two of these are particularly relevant: the infrared
proximity sensors, and the IrRB module. The proximity sensors detect obstacles

1 Another reference could be the performance of a randomly moving robot. In many of the
experiments this is also shown, since this correponds to the case where the servicing robot S
is the only robot in the swarm.
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Fig. 3 The foot-bot robot developed within the Swarmanoid project.

at a range of a few centimeters. We use them as virtual bumpers, to let robots
turn away from nearby obstacles. The IrRB module (Roberts et al., 2009; Bonani
et al., 2010) provides local line-of-sight communication. It sends messages of 10
bytes, and has a capacity of 10 messages per second (so robots can broadcast an
update every 0.1 s). Its maximum range can be of more than 5 m, but was limited
to 3 m here, in order to be able to do tests in smaller environments.

As simulation tool, we use ARGoS (Pinciroli et al., 2012), a physics-based sim-
ulator for heterogeneous multi-robot systems. Being developed within the Swar-
manoid project, ARGoS contains reliable physics models of this robot. It also
comes with a middleware for controlling the real robots, so that any code written
for the simulator can be ported unchanged to the robots.

3.2 Tests in an uncluttered environment

We use an uncluttered closed area of 20×20 m2. The robots are placed in the area
according to a uniform random distribution. One of the robots is a target and re-
mains static. A second robot needs to navigate to this target. The remaining robots
move according to a random direction mobility model with fixed speed (Bettstetter,
2001). This model is defined as follows: choose a direction θ uniformly from ]−π, π],
turn towards θ, choose a time t from an exponential distribution with fixed average
(set to 10 s here), move forward for this time t, and then repeat this process. We
use a forward speed of 0.15 m/s, both for the searching and the randomly moving
robots. We vary the number of robots in the swarm, from 2 (0 randomly moving
robots) up to 92 (90 randomly moving), which corresponds to an average robot
density ranging from 0.05 to 0.23 robots/m2. In turn, considering that the com-
munication radius is 3 m, these settings correspond to networks with an average
node degree ranging from 0.07 to 6.4 (the average node degree is computed as
πr2((N − 1)/A), where r is the communication radius, N is the number of robots,
and A is the total area). For each data point, we make 500 independent test runs
(this high number is needed because the random initial positions of searcher and
target induce a high variance). We measure the time between the start of each
test and the moment the searching robot comes in range of the target.

The results are shown in Figure 4. We compare the two variants of the naviga-
tion system presented in Section 2, navigation with stopping (NwS) and navigation
with random (NwR), which differ in the strategy used by the searching robot when
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Fig. 4 Test results in an uncluttered environment for a single searching robot and an increasing
number of randomly moving robots. In the figure, the results for NwS and NwR (the two
different strategies used to deal with the temporary absence of navigation information) are
reported, together with the performance that would be obtained by following the shortest
path. The shaded areas around the curves indicate the standard deviation.

it does not have any navigation information (respectively, waiting for new informa-
tion, or performing a random movement according to the random direction model).
The results show a large difference in performance between the two strategies for
low numbers of robots. This is because the communication network is sparse, and
navigation information spreads slowly from the target, so that the searcher often
falls without information. In the extreme case with 0 randomly moving robots,
navigation with stopping can never reach the target. Navigation with random, on
the other hand, does find the target, through random search. The expected time
for a randomly moving agent to find a static target within a given environment is
normally referred to as the expected hitting time, ET (Spyropoulos et al., 2006).
For many mobility models, including the random direction model used here, ET
can be calculated analytically (Spyropoulos et al., 2006). In our case, ET can be
considered an upper bound for the performance of the navigation with random
strategy. It is interesting to note that even a very low number of randomly moving
robots in the environment gives an improvement in the navigation delay compared
to ET . This confirms that even in very sparse swarms, the navigation information
on board of randomly moving robots can be useful to guide the searcher, as ex-
plained in Section 2.2.

For larger swarm sizes, performance improves for both strategies. This is on the
one hand because the improved connectivity in the swarm makes the navigation
information more reliable, as pointed out in Section 2.2, and on the other hand
because information reaches the searcher more frequently. The latter also means
that the searcher finds itself less often without navigation information, so that the
difference between the two strategies decreases. For the highest numbers of robots,
performance gets close to the time needed to cross the straight line distance be-
tween the searcher’s initial position and the target. This is indicated in Figure 4 as
“Navigation shortest path” 2. This gives a lower bound for the expected navigation
time. The good performance for large swarm sizes shows both the efficiency and
scalability of the system. In additional simulation experiments (not reported here)

2 Given the random locations of searcher and target robots in the experiments, we show the
delay to navigate the expected length of the shortest path.
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we could verify that the navigation delay is relatively stable for swarm sizes up to
500 robots. It is also interesting to note the gradual degradation of the system’s
performance as the number of robots decreases. This indicates that the navigation
system does not rely on a specific minimum number of robots.

Finally, we discuss the standard deviation of the navigation delay, as shown in
Figure 4 by the shaded areas around the curves. This is quite large, due to the
fact that the searcher and target robots are placed randomly in the arena: the
randomness of the start locations contributes to the variations in delay. We opted
for this approach in our tests, in order to avoid that a specifically chosen target
location could have an unwanted influence on the results. We also point out that
at each point along the curves of Figure 4, the reported standard deviation is more
or less equally large as the reported average. This is in line with theoretical results
for the propagation delay of communication messages in mobile delay tolerant
networks under similar circumstances, which is usually exponentially distributed
(see Section 2.2 and (Spyropoulos et al., 2008)). Very similar observations were
made for all other tests in this paper that use randomly chosen searcher and target
locations: the standard deviation is always close to the mean. We will in the rest of
this text therefore only report standard deviations for tests with different setups.

3.3 Tests with different movement patterns

The performance of our system depends on the movement patterns of the robots
of the swarm: this defines for a large part how and where navigation information
spreads. Here we carry out experiments in the same uncluttered environment used
in Section 3.2, using different mobility models. We use the random waypoint model
(RWP) (Johnson and Maltz, 1996) and the restricted random waypoint model
(RRWP) (Blažević et al., 2002).

Under RWP, each robot randomly chooses a location in the environment to
move to, and chooses a speed. It moves to the chosen destination with the chosen
speed, and then waits there for a fixed pause time, before choosing a new desti-
nation and speed. RWP has very different statistical properties compared to the
earlier used random direction model (Bettstetter et al., 2004; Nain et al., 2005).
E.g., it lets robots make longer straight movements (since robots can choose any
location in the area to move to), it leads to a non-uniform stationary distribution
of robots over the area, etc. We use RWP with a fixed speed of 0.15 m/s and a
pause time of 10 s. We vary the swarm size from 2 up to 75. The results are shown
in Figure 5 left. They are very similar to the ones obtained with random direc-
tion movement in Section 3.2, showing that the differences between the mobility
models has a limited impact on the performance of the navigation algorithm.

RRWP is a variation of RWP, in which robots can choose their destinations only
from pre-defined destination areas in the environment. A fixed roaming probability p

defines whether a robot picks its new destination from its current destination area
or from a different one (roaming). To define the destination areas, we overlay the
environment with a grid of 3×3 cells, where each cell is a different destination area
(so, in our experiments, each point in the environment is part of exactly one des-
tination area). We vary p between 10−4 and 1. For low values of p, robots remain
mainly within their cell, so that we get almost exclusively local robot movements.
In this case, navigation information rarely spreads between cells by being carried
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Fig. 5 Test results with different random mobility models for a single searching robot. The
left figure refers to the case when the other robots in the swarm move according to the random
waypoint model, and shows the results for an increasing number of robots. The right figure
refers to the case when the other robots move according to the restricted random waypoint
model. In this case, a swarm of 25 robots is considered and the results show the impact of
using different roaming probabilities. In both figures, the results for NwS and NwR are reported
together with the performance that would be obtained by following the shortest path.

on board of robots, but rather through communication between robots near the
cell boundaries. This has as a side effect that if one or more cells fall without
robots, information may not be able to travel between target and searcher for long
periods of time. Instead, for high values of p, robots are forced to leave their cell
often, so that they execute long movements through the environment and bring
navigation information around quickly. We believe that the different movement
patterns obtained this way cover a large variety of possible behaviors of the robots
of the swarm. E.g., the different cells may represent different parts of a factory,
where robots perform mainly local movements around assigned work stations, or
they could refer to different areas in a warehouse, where robots perform long
range movements to bring goods around. We use a swarm with 25 randomly mov-
ing robots, which is a relatively sparse setup, in which the MANET is normally
not connected. The results are shown in Figure 5. The very bad results for the
navigation with stopping strategy at low values of p are due to the earlier men-
tioned effect that cells can fall without robots for a long time, effectively stopping
the spreading of navigation information. However, for the navigation with random
strategy, these negative effects are rather limited. For larger values of p, we note
that the higher mobility of robots improves the performance of both algorithms,
though, again, the effect is limited for the navigation with random strategy. We
can conclude from these results that if the situation is such that information can
flow from target to searcher between the robots, the actual movement patterns of
the intermediate nodes does not matter much.

In the following, all tests are executed with the randomly moving robots fol-
lowing the random direction mobility model (see Section 3.2).

3.4 Tests in cluttered environments

Since our navigation algorithm looks for obstacle free paths (see Section 2), it
deals naturally with cluttered environments. We did experiments in the two envi-
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ronments shown in Figure 6. Again, we deploy the swarm according to a uniform

Fig. 6 Layout of cluttered environments used in our experiments. Left: a simple environment;
right: a maze. The area is 20×20 m2 in both cases.

random distribution, and we measure the time needed for the searcher to reach
the target. The results are shown in Figure 7. As can be expected, navigation
delays get higher as the environment gets more complex, with the highest values
measured in the maze. Also, a larger swarm is needed to bring this delay down,
and the system has more difficulties to reach the time required to travel over the
shortest path. Nevertheless, we get the same trends in performance as in unclut-
tered environments, and with a large enough swarm, the system guides a searching
robot to its target efficiently.

We point out that our navigation system can also deal with dynamic obstacles.
We do not report results here, due to lack of space, but it is clear that a reactive
approach such as the one presented here has advantages in dynamic environments
compared to, e.g., map based navigation systems.

3.5 Shortest path

In cluttered environments, a searcher may have several possible paths available
to move to its target. Since our algorithm lets a searcher move in the direction
from where it receives the navigation information that has traveled the shortest
time or the shortest distance (see Section 2.2), it should have a preference for
the shortest path. We consider the scenario of Figure 8 to test this property. The
target is placed in the upper part of the arena, and the searcher in the bottom
part. There are two paths between them: a long one of 24 m, and a short one
of 12 m. We do tests with increasing swarm sizes, from 3 robots (1 searcher, 1
target and 1 randomly moving robot) up to 72 (70 randomly moving robots). The
results are shown in Figure 9. We show how often the searcher chooses the short
path (as a fraction of the total number of tests), and we show the time needed for
navigation. The results show that the navigation algorithm has a clear preference
for the shortest path. Also, this preference leads to lower navigation delays (for the
NwR strategy, we plotted the navigation delay separately for the tests in which
respectively the short or the long path was chosen).
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Fig. 7 Test results in the cluttered environments of Figure 6 for a single searching robot and
an increasing number of randomly moving robots. The left plot refers to Figure 6 (left), and
the right one to Figure 6 (right). In both figures, the results for NwS and NwR are reported
together with the performance that would be obtained by following the shortest path.

Fig. 8 Test setup for shortest path testing. The searcher starts from the bottom (indicated
by the red circle). The target is placed above (indicated by the blue disk). The area is 14×14
m2.

One striking element in these results is that the probability of choosing the
short path is related to the swarm size, and that this relationship is different for
the two navigation strategies. To explain this, let us first look at the results for
the largest and smallest swarm sizes. In the scenarios with largest swarm size
(70 randomly moving robots), navigation information travels primarily through
multi-hop message forwarding between robots. The swarm is well connected, and
navigation information travels equally quickly in all directions from the target T .
Since the distance to be covered is less over the short path, the information reaches
the searcher S faster this way, letting S prefer the short path. Since S rarely finds
itself without navigation information, the behavior and performance are identical
for the two navigation strategies.

The situation is very different for the smallest swarm size (1 randomly moving
robot). Here, navigation information only travels by being carried on board of the
single randomly moving robot A. Under the navigation with random strategy, the
influence of A is rather limited, and S finds T mainly through random search.
Under the navigation with stopping strategy, on the other hand, S moves only
when A brings it a new sequence number. This means that each time A moves
from T to S, S makes a step towards T , where the step size depends on the
communication range. Whether this step is towards the short or the long path,
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Fig. 9 Test results in the cluttered environment of Figure 8 for a single searching robot and
an increasing number of randomly moving robots. For both the NwS and the NwR strategies,
we show the fraction of runs in which the searcher uses the short path (left), and the average
time needed for navigation (right). Shaded areas around the average navigation delay curves
show the standard deviation (compared to other tests, standard deviations are lower here,
because searcher and target do not start from random positions; see Section 3.2). For the NwR
strategy, we also show the average navigation delay when splitting up the results according to
the path taken by the robots.
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Fig. 10 State space representing the movement of the searching robot.

depends on which path was used by A to reach S. To analyze this behavior, we
model it as a random walk in a one-dimensional, discrete state space, as shown in
Figure 10: S starts in an initial state i, and moves in discrete steps either to the
left or to the right. The walk ends when S reaches either state 0 (which means S
reached T over the long path) or state N (S reached T over the short path). Since
we use a communication range of 3 m, we set N = 24+12

3 = 12 and i = 24
3 = 8.

The model shown in Figure 10 corresponds to a well-known problem in probability
theory, called the gambler’s ruin problem (El-Shehawey, 2009). The probability for
an agent starting in i to end up in N , rather than in 0, is known to be:

PN (i) =
1 +

∑i
m=2

∏m−1
k=1

p(k,k−1)
p(k,k+1)

1 +
∑N

m=2

∏m−1
k=1

p(k,k−1)
p(k,k+1)

. (1)

We first use this formula to model the behavior of the randomly moving robot
A. In this case, the transition probabilities between states are all equal p(i, i+1) =
p(i, i−1) = 0.5, and equation 1 simplifies to PN (i) = i

N : the probability of choosing
the short path depends linearly on the difference in path length. This behavior of
A can be compared to the movement of S in the navigation with random strategy
(since S moves mainly randomly), where the fraction of runs using the short path
is 0.67 (a very close fit, given that i

N = 8
12 ). For the navigation with stopping

strategy, the transition probabilities depend precisely on the probability of the
randomly moving robot A to reach S either over the short or the long path, so
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that p(i, i+1) = i
N and p(i, i−1) = 1 − i

N . Plugging this in equation 1, we get
PN (i) = 0.89, which is very close to the observed performance of 0.92.

Scenarios with intermediate swarm sizes fall in between these two extremes. We
make a distinction between intermediate large swarm sizes (40–60 randomly mov-
ing robots) and intermediate small swarm sizes (5–35 randomly moving robots).
For intermediate large swarm sizes, the performance of the two navigation strate-
gies is identical. This means that S rarely finds itself without navigation infor-
mation, which is an indication that there is usually a connected route between S

and T in the MANET, over which information flows continuously. However, due
to the lower robot density compared to the largest swarm size, network connec-
tivity may be less than perfect. As a consequence, the connected communication
route sometimes only exists over one of the two navigation paths, and S may oc-
casionally be attracted towards the long path. For intermediate small swarm sizes,
the performance differs between the two navigation strategies, indicating that S
regularly finds itself without navigation information. This is because at low den-
sities, a MANET falls apart into smaller connected clusters (Dousse et al., 2002),
such that information cannot flow continuously. However, compared to the case
of very small swarm sizes (e.g., the case with only 1 randomly moving robot),
the presence of connected clusters has an important consequence. It means that
whenever S meets a robot with navigation information, it immediately also finds
a number of other robots with similar information, so that it moves longer into
the same direction before finding itself again without information. In the context
of the state space shown in Figure 10, this could roughly be modeled by using less
states (because each step of S in a given direction will normally go on for longer
than the communication range). E.g., if we assume a step size of 6 m, we could use
the same model with N = 6 and i = 4, while keeping the same transition probabil-
ities of p(i, i+1) = i

N . This gives a result of PN (i) = 0.81. This preference for the
short path is lower than in the case of the navigation with stopping strategy with
only 1 randomly moving robot (0.89), but higher than the case of the navigation
with random strategy with only 1 randomly moving robot (0.67). This explains
why navigation with random always improves the preference for the short path
with increasing swarm sizes, while navigation with stopping first decreases this
preference, and only later increases it (when end-to-end connected routes appear).

4 Collective navigation

In the collective navigation problem, all robots of the swarm navigate between
target event locations. For the experiments, we consider a basic scenario in which
all robots navigate back and forth between two targets present in the environment,
T and T ′. As pointed out in Section 1, this is a common task in swarm robotics.
To follow swarm terminology, we refer to the two target locations as nest and

food source. In this case, we report results only for the “navigation with random”
strategy, as this gives the best performance. Our goal is to show that our commu-
nication based navigation algorithm can also be used in this scenario. However,
the observed performance and properties of robot navigation are different com-
pared to the single robot navigation scenario, due to the specific characteristics
of the collective navigation scenario. In particular, the collective execution of the
same behavior by all robots lets the swarm self-organize, such that coordinated
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Fig. 11 Setup for collective navigation experiments. The area is 20×20 m2. The target robots
(food and nest) are located in the top-right corner (food robot, indicated with a big blue disk)
and in the bottom-left corner (nest robot, indicated with a big red circle). Initially, half of the
robots (indicated with circles) go to the nest source, the other half (indicated with disks) go
to the food source.

behavior emerges from the local interactions between the individual robots. This
self-organization improves the performance and efficiency of navigation.

In what follows, we first investigate the behavior of the system in uncluttered
environments, to study the self-organized behavior of the swarm. After that, we
study the same behavior in cluttered environments. Finally, we investigate what
happens when two paths of different lengths are available between nest and food
source: we show that the self-organized behavior lets the swarm select one of the
two paths, with strong preference for the shortest.

As performance metrics, we use the average navigation time of the robots mov-
ing back and forth between target locations. In addition to this basic metric, we
also consider the total “service” performed by the swarm, measured by the num-
ber of times a robot reaches a target location, and the amount of self-organized
cooperation within the swarm, measured through hierarchic social entropy (Balch,
2000). Moreover, we measure to which extent the navigation paths followed by the
robots are equivalent to the shortest ones.

4.1 Self-organized behavior in an uncluttered environment

We first use the setup shown in Figure 11. Two robots, indicating the nest and
food source, are placed in opposite corners of the arena, at a distance of about 20
m. All other robots are placed according to a uniform random distribution. Half
of these robots initially go to the food source, the other half to the nest. A robot
that has reached its target (i.e., food source or nest) starts moving towards the
other target. A robot is said to have reached a target when it comes within 0.5 m
of it. We vary the total number of searching robots in the swarm from 2 up to 60.
We perform 50 independent test runs of 5000 s for each setup. We measure the
average time needed by robots to move from one target to the other. We compare
to experiments with the same numbers of robots, but where only one robot is
going back and forth between nest and food source, while the other robots of the
swarm are moving according to the random direction mobility model (as in the
single robot navigation experiments of Section 3).
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Fig. 12 Test results for collective navigation in the uncluttered scenario of Figure 11. The
figure reports the observed navigation delays (average and standard deviation) for an increasing
number of robots, for the case in which all robots in the swarm go back and forth between
nest and food source (collective navigation), and for the case in which only one robot is going
back and forth between nest and food while the other robots of the swarm move according to
the random direction mobility model (single robot navigation).

The results of these tests are shown in Figure 12. For both single robot nav-
igation and collective navigation, performance improves as the number of robots
increases, since navigation information spreads more easily in densely connected
swarms (see Section 3). However, for the collective navigation scenario, the perfor-
mance improves faster (with 30 robots, navigation delay of collective navigation
is about half of that of single robot navigation). Also, the standard deviation of
the navigation delay drops faster for the collective navigation scenario, indicating
a more stable performance. This is due to cooperation. When a robot moving to-
wards the food source (and hence coming from the nest) and a robot navigating
towards the nest meet, they can give each other navigation information about their
respective targets. Moreover, if a group of robots moving towards the same target
are in communication range from each other, new information received by any of
them spreads throughout the whole group, and they simultaneously move in the
same direction. These two effects make robots form clusters moving in opposite di-
rections. When there are enough robots, such clusters can become large enough to
cover the whole distance between nest and food source. At that point, the swarm
organizes into a stable structure, which we refer to as a dynamic chain. Figure 13
illustrates this behavior for a typical run of collective navigation with 40 robots.
It is this behavior which causes the strong improvement in performance between
20 and 30 robots in Figure 12. For larger swarms (50 and 60 robots), congestion
of robots near the target locations leads to a slight decrease in performance.

The dynamic chain is an example of emergent self-organized behavior: the swarm
shows organization at the global level that emerges from local interactions between
individual robots. In what follows, we investigate when this self-organization arises
and how stable it is. To do this, we first need a measure for self-organization.
Several authors use entropy to measure self-organization in the context of swarm
robotics (Baldassarre, 2008; Sperati et al., 2011). If X is a random variable which
can take M different states, its entropy H(X) is defined as

H(X) = −
M∑
i=1

pi log2(pi), (2)
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Fig. 13 Collective navigation after 300 s of simulation: a self-organized dynamic chain has
formed, with part of the robots going to the food source (red circles) and the others going to
the nest source (blue disks).

where pi is the probability that X is in state i (here, we refer to Shannon’s infor-
mation entropy (Shannon, 1949)). Strictly speaking, this is a measure of order (or
disorder), rather than self-organization: the more a system is ordered, the more
you can find it in a limited subset of its possible states, and the lower the entropy.
In principle, self-organization is more than just an increase in order, and different
measures for self-organization have been proposed (Shalizi et al., 2004). For us,
however, it is sufficient to measure whether there is increased order in the behavior
of the robots, so we stick with entropy.

To calculate the entropy H(X), we need a discrete variable X that characterizes
the swarm behavior. In (Baldassarre et al., 2004; Sperati et al., 2011) the authors
use the orientation of the robots, discretized into four bins; the entropy based
on this variable indicates to what extent the robots move in the same direction.
In our case, this measure can be used (once the chain is formed, robots move in
similar directions), but it is quite noisy, especially when there is congestion (robots
turn to avoid each other). What we really want to measure is whether the robots
move in a low number of connected clusters; that is, whether there is order in
their physical locations. To do this, we turn to hierarchic social entropy (Balch,
2000), which proposes an entropy measure for a group of robots characterized by
a multi-dimensional variable. In our case, this multi-dimensional variable will be
the location coordinates of each robot. The idea behind hierarchic social entropy is
to first cluster the robots using hierarchic clustering based on a distance threshold
h: a robot is added to a cluster if it is within distance h of all the robots in the
cluster. The division of robots into clusters gives a discrete variable X on the basis
of which entropy is calculated (the clusters form the M different states for X, and
the probabilities pi are defined by the number of robots in each cluster). Obviously,
X depends on the threshold h: if h = 0, each robot is in a cluster of its own, and
entropy is maximal, while if h =∞, all robots fall in a single cluster, and entropy
is 0. Therefore, the notation H(R, h) is used to refer to the entropy of a group of
robots R using clustering distance h. The hierarchic social entropy S(R) is then
defined by integrating H(R, h) over all values of h:

S(R) =

∞∫
0

H(R, h)dh. (3)
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Fig. 14 Evolution of the hierarchic social entropy S(R) over the course of an example test
run for 20, 30, and 40 robots
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Fig. 15 Fraction of test runs for collective navigation in which a stable dynamic chain forms.

We use S(R) based on the location coordinates of the robots to analyze the
behavior of the swarm. Compared to the definition of S(R) in (Balch, 2000), we
introduce one change, related to the clustering: we use single linkage clustering,
which means that a robot is added to a cluster if it is within distance h of any robot
in that cluster. Single linkage clustering can find long stretched clusters (Kuiper
and Fisher, 1975), which enables it to detect the chaining behavior of the swarm. In
Figure 14, we show the evolution of S(R) over the course of example test runs with
20, 30 and 40 robots; we calculate S(R) at every time-step of 0.1 s, and average it
per 100 s of simulation. When the robots of the swarm move close together, there
is a drop in entropy. When the dynamic chain forms, entropy stays low for an
extended amount of time. All runs with 20 and 40 robots display patterns similar
to the ones shown here: for 20 robots, the chain never forms, while for 40 robots
it forms quickly and remains for the whole duration of the simulation. With 30
robots, varying patterns have been observed. In some runs, including the example
here, the chain forms after a while. In other runs, it does not form. Interestingly,
when it does form, it usually stays for the whole test duration. This suggests that
the chain is stable with respect to perturbations.
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Fig. 16 Transport performance of the swarm: frequency with which the target robots are
reached by the other robots of the swarm as a function of the number of robots in the swarm.

In Figure 15, we study the stability of the chain. For increasing numbers of
robots, we perform each time 50 test runs, and measure in which fraction of those
runs a stable dynamic chain appears. We consider the chain stable if for the last
1000 s of the test S(R) remains below 0.2 (these thresholds were set empirically;
see Figure 14 to understand how they allow distinguishing scenarios where a stable
chain has formed from others). The graph shows a clear phase transition around
30 robots: with less robots, the system never self-organizes, with more it always
does. Such phase transitions are typical of self-organizing systems in physics and
in biology, and have also been observed in swarm robotics (Baldassarre, 2008).
They indicate that within a given range of a control parameter, the self-organizing
behavior is robust and takes place independently of perturbations in the system
(e.g., loss of robots due to failures, or the arrival of new robots).

Finally, in Figure 16, we show how frequently the targets are reached by the
robots. This indicates how many items the swarm could transport between the two
locations. Increasing the swarm size, one could expect a sub-linear performance
improvement, because more robots can transport proportionally more items (linear
improvement), but there is also increased congestion. In our system, increased
swarm size also gives more cooperation, which leads to a super-linear increase
in performance between 10 and 40 robots (the slope of the performance curve
increases between each two measurement points). Above 40 robots, congestion
makes the performance growth decrease.

4.2 Cluttered environments

In this section we consider the cluttered environments of Figure 17. The nest and
food source are placed in the same locations as in the uncluttered environment,
but now obstacles have been placed between them. We compare again single robot
navigation and collective navigation. We report the average navigation delay in
experiments with varying swarm sizes in Figure 18. As in the case without obstacles
studied in Section 4.1, collective navigation is more efficient than single robot
navigation. However, as the environment gets more complex, its advantage gets
smaller. This is because the swarm has more difficulties to form and maintain
the dynamic chain around the obstacles. This also results in a more unstable
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Fig. 17 Layout of cluttered environments used for collective navigation experiments. The area
is 20×20 m2 in both cases.
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Fig. 18 Test results in the cluttered environments of Figure 17. The left plot refers to Figure 17
(left), and the right one to Figure 17 (right). The plots report the observed navigation delays
(average and standard deviation) for an increasing number of robots, for the case in which all
robots in the swarm go back and forth between nest and food source (collective navigation),
and for the case in which only one robot is going back and forth between nest and food while
the other robots of the swarm move according to the random direction mobility model (single
robot navigation). The NwR strategy has been used in all the reported experiments.

performance (high standard deviation). We illustrate this in Figure 19, where we
show the evolution of the hierarchic social entropy over time for a typical test run
with 40 robots in the scenario of Figure 17 (right). The entropy is low for certain
stretches of time, indicating that the dynamic chain is formed, but also goes up
again, showing that the chain gets lost sometimes. These results show that the self-
organized behavior works in the presence of obstacles, but that it has difficulties
when the environment becomes too complex. In such environments, the algorithm
still works, but it looses the advantage obtained through self-organization, and the
performance becomes comparable to that obtained in single robot navigation.

4.3 Shortest path finding

As in the case of single robot navigation, we investigate the behavior of the system
in case two paths of different length are available between nest and food source. We
use the environment of Figure 8, where we now place a nest and a food source in
the locations that were previously used for searcher and target. The two locations



26 F. Ducatelle, G. A. Di Caro, et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2000  4000  6000  8000  10000
E

nt
ro

py

Simulation time (s)

40 robots

Fig. 19 Evolution of the hierarchic social entropy S(R) over the course of an example test
run for 40 robots in the environment of Figure 17 (right).

are connected by a short path of length ds = 12 and a long path of length dl = 24.
We vary the swarm size from 5 to 70 robots, and perform 25 tests of 5000 s for each
size. We measure the average time a robot needs to navigate between the target
locations. We also observe which path each robot takes to reach its target: the
short or the long one. We combine this per test run, to calculate the percentage
of robots using the short path, ps. If ps > 90%, we say the swarm uses the short
path, if ps < 10% it uses the long path, and otherwise it uses both.

 0

 200

 400

 600

 800

 1000

 5  10  15  20  25  30  35  40  50  60  70

N
av

ig
at

io
n 

de
la

y 
(s

)

Number of robots

Short path
Both paths
Long path

Average delay

Fig. 20 Shortest path finding performance in the cluttered environment of Figure 8. The left
figure shows the navigation delay versus number of robots for each individual test, as well as
the average per swarm size (25 tests per swarm size). The choice of path in each test is shown
by the point symbols. The right figure shows a snapshot of the dynamic the chain formation
observed during one the simulation experiments.

Figure 20 shows the result of each individual test, as well as the average per
swarm size. As in the case of single robot navigation, the robots have a preference
for the short path. Also, this preference leads to efficient navigation, as those runs
that use the short path usually experience a lower navigation delay (with exception
for swarm size 70, where congestion starts to play a major role).

It is interesting to observe the evolution of the preference for the short path for
increasing swarm sizes. For swarm size 5, the preference for the short path is rather
modest. For 10 robots, the preference is already much stronger, but it is starting
from swarm size 15 that the results start to look different: in all runs, all robots
always use the short path, and navigation delay is very low and equal over all
runs. This highly efficient navigation behavior is due to the self-organized formation
of the dynamic chain. On the one hand, we observe here the same improvement
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of navigation efficiency as in uncluttered environments (see Section 4.1). On the
other hand, there is also a second effect, namely that the dynamic chain makes the
collective navigation lock onto one of the paths: once the swarm forms the chain on
one path, it will normally not change to the other path anymore. This means that
the normal preference for the short path (as observed in single robot navigation)
is further reinforced by the chain formation, such that the short path emerges as
a stable solution chosen by the swarm for navigation. Between 15 and 30 robots,
there are enough robots to form the chain over the short path, but not over the
long path. This makes the swarm always choose the short path. Starting from
35 robots, the chain can also be formed over the long path (verified in separate
tests not shown here), and we start to observe this from swarm size 40. While the
robots’ general preference for the short path normally makes the chain form there,
fluctuations due to the robots’ random initial distribution, or due to collisions and
congestion, let the chain occasionally choose the long path. Such amplification of
fluctuations (where one of several system-level states are chosen based on small
differences in the initial states of the system components) is a typical phenomenon
observed in self-organizing systems in nature (Prigogine and Stengers, 1984). We
also conducted tests placing the targets at different locations, so as to reduce the
difference between ds and dl (swarm size 50). This led to proportional changes in
the number of runs choosing the short path.

5 Implementation on real robots

We implemented the communication based navigation system on real foot-bots (Bo-
nani et al., 2010). Since this is the robot used as model in the simulation exper-
iments, the robot characteristics (IrRB capacity, robot speed, etc.) are the same
as described in Section 3.

In a first experiment, we used an arena of 10 × 4 m2, which is largely unclut-
tered, except for a wall of 1.4 m on the side. Figure 21 shows a photograph of the
arena, as well as an image of how it was reproduced in simulation. We placed a
source and target robot in this arena, in the locations of the two robots shown in
the figure. Due to the small size of the arena, we limited the communication range
of the IrRB system to 2.5 m. We carried out tests similar to the ones reported in
Figure 12: we compare single robot navigation (1 searcher, all other robots perform
random movements) and collective navigation (all robots are searchers) in tests
with increasing swarm sizes (from 1 moving robot, up to 10). For each swarm size,
we run one single long experiment of 30 minutes, in which the searching robot(s)
go back and forth many times. We also reproduce the same experiments in simu-
lation. We report the average time needed for navigation between the source and
target. The results are shown in Figure 22. Both in reality and in simulation, the
data show the same trend as in the earlier results of Figure 12: navigation delay
improves and gest more stable (lower standard deviation) with increasing numbers
of robots, but for collective navigation, there is a faster improvement thanks to
the chain formation. This chain formation was also observed visually by us.

Moreover, although there are some quantitative differences between simulation
and real robots results, the trends are qualitatively the same (both for the average
and the standard deviation).
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Fig. 21 Arena used in the real robot experiments: photograph (left) and as reproduced in
simulation (right). The photograph was taken from the position of the camera icon in the right
image. In this image, the circle and the disk symbols indicate respectively the position of food
and nest robots.
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Fig. 22 Experimental results for single and collective navigation using real robots in the
scenario of Figure 21 (left). The average navigation delay is reported for an increasing number
of robots. The results obtained in simulation considering the equivalent scenario of Figure 21
(right) are also reported to show the good correspondence between simulation and real robot
behavior. For the collective navigation scenarios, we also show the standard deviation, both
for simulation and for real robots.

In a second experiment, we did tests similar to the ones of Section 4.3. We
used an arena of 3.10 × 4.35 m2, with in the middle an obstacle of 0.75 × 1.75
m2. The target and source were placed on either side of the obstacle, at about
two thirds along the long edge of the arena, such that a long and a short path
were available among them. Figure 23 shows a photograph of the arena, as well
as an image of how it was reproduced in simulation. Due to the small size of the
arena, we restricted the communication range of the robots to 1.5 m. We ran tests
with increasing numbers of moving robots, from 1 up to 8, for both single robot
navigation and collective navigation, and reproduced the same tests in simulation.
Each test lasted 40 minutes, but for the collective navigation, we split this up into
4 times 10 minutes. This is because the chain formation makes the robots’ choice
for either the short or the long path stable for long time, such that consecutive
trips between source and target can not be considered as independent samples; in
single robot navigation, on the other hand, the correlation between consecutive
trips of the searching robot is limited, such that all trip times gathered during a
single run of 40 minutes give enough independent test samples. The results are
shown in Figure 24. We report the average delay needed to move between source
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and target, and the fraction of robots following the short path. The correspondence
between simulation and real robots is good, qualitatively, although quantitatively
there are some differences. The trip time results show that the difference between
single robot and collective navigation is limited in this case, due to the small size
of the arena which causes more congestion. This also results in a high standard
deviation on the navigation times. On the other hand, the choice for the shortest
path shows a strong difference between the two navigation scenarios: while single
robot navigation leads to a preference for the short path that increases linearly
with the number of robots, collective navigation has a faster increasing preference
for the short path, due to the chain formation (compare to Figure 20).

Fig. 23 Arena used in the real robot experiments with obstacle: photograph (left) and as
reproduced in simulation (right). The circle and the disk symbols in the right image indicate
the position of the food and the nest robots.

Finally, we point out that in previous work (Ducatelle et al., 2009), we imple-
mented the navigation algorithm on e-puck robots (Mondada et al., 2009), fitted
with an IrRB communication board (Gutiérrez et al., 2008). The capacities of these
robots and their IrRB system are limited compared to those of the foot-bots: each
robot could send only 2 bytes per second, with significant packet loss, and very
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Fig. 24 Experimental results for single and collective navigation using real robots in the
cluttered scenario of Figure 23 (left). In the left figure, the observed average delay for the
navigation between source and target is reported for an increasing number of robots. For
collective navigation, we also show the standard deviation (both for simulation and for real
robots). The right figure shows the fraction of robots following the short path. The results
obtained in simulation considering the equivalent scenario of Figure 23 (right) are also reported
to show the good correspondence between simulation and real robot behavior.



30 F. Ducatelle, G. A. Di Caro, et al.

noisy range and bearing estimates. Nevertheless, the navigation system worked
fairly well. We refer to (Ducatelle et al., 2009), where we report results from these
tests. Finally, in some other tests using the foot-bot robots, reported in (Ducatelle
et al., 2011b), we observed frequent robot failures, and we tested adding robots
to and removing robots from the swarm, with the navigation algorithm adapting
easily to such changes. All these tests show the general robustness, adaptivity and
scalability of the algorithm.

Videos of these experiments as well as of similar experiments used for the pa-
per (Ducatelle et al., 2011b) can be seen in on-line supporting material at:
http://www.idsia.ch/∼gianni/SwarmNavigation/videos.html. Moreover, a general
illustration of the behavior of the algorithm, both in simulation and using real
robots, can be found in the video cooperative-navigation.mp4 included in the
web site of the publisher as Electronic Supplementary Material.

6 Related work

In this paper, we have presented an algorithm for communication based coopera-
tive navigation in swarm robotics. The works closest related to ours are situated
in the areas of communication based navigation, and cooperative navigation in
swarm robotics.

Several works are related to ours because of the way they use communication
to guide navigation. One setup that has been studied extensively over the past few
years is to fit the environment with a network of wireless communication nodes,
which guide a single robot to a target (Batalin and Sukhatme, 2007; O’Hara et al.,
2008). The communication nodes may be wireless sensor nodes, which sense the
local environment and take this sensed information into account when planning a
path (Li and Rus, 2005), or nodes without sensors, which use only communica-
tion for path planning (O’Hara and Balch, 2004). Many of these approaches use
communication links to define obstacle-free paths, e.g., using infrared communi-
cation (O’Hara et al., 2008), so that they can use network routing algorithms to
define navigation paths. An important difference with our approach is that most
of these works assume that the communication network that guides the mobile
robot is static and embedded in the environment; they do not foresee the possi-
bility that mobile robots guide each other’s navigation. Some works do use mobile
robots, e.g., to deploy the static communication nodes (Batalin and Sukhatme,
2004), or to fill gaps in the sensor network (Witkowski et al., 2008). The clos-
est approach to ours is (Sgorbissa and Arkin, 2003), where a navigating robot
gets support to move around obstacles from a few mobile explorer robots, using
line-of-sight communication. Different from our work, however, these few explorer
robots are dedicated to support the single robot’s navigation task. The authors
do not consider the possibility that a whole swarm of mobile robots guide each
other’s navigation, where each robot may be involved in a task of its own and is
not dedicated to support the navigation of the others.

Within the context of swarm robotics, most work on cooperative navigation is
based on indirect stigmergic communication (Werger and Matarić, 1996; Wodrich
and Bilchev, 1997; Sharpe and Webb, 1999; Russell, 1999; Sugawara et al., 2004;
Garnier et al., 2007; Fujisawa et al., 2008; Mayet et al., 2010; Nouyan et al., 2008,
2009; Ducatelle et al., 2011a), rather than on direct communication as in our al-
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gorithm. This approach is typically inspired by the behavior of certain types of
ants, where individual ants mark their paths using a chemical substance, called
pheromone, and follow these pheromone trails to find their way between the nest
and a food source (Bonabeau et al., 1999). The joint pheromone laying and follow-
ing actions of the ants of a colony reinforce the most efficient paths, and lets the
swarm as a whole self-organize to find shortest paths (Deneubourg et al., 1990).
An important problem for the application of such approaches in robotics is how
to physically implement pheromone. A common solution is to mark the trail with
a chain of robots (Werger and Matarić, 1996; Nouyan et al., 2009). Compared to
our system, this has the disadvantage that some of the robots remain static and
cannot take part in navigation. Moreover, the system is vulnerable to failures of
robots in the chain, making it less robust. Other approaches include the use of
alcohol (Russell, 1999; Fujisawa et al., 2008), phosphorescent paint (Mayet et al.,
2010), or light encoding of pheromone using an overhead projector (Garnier et al.,
2007; Sugawara et al., 2004), which are interesting, but in practice might be rather
hard to detect and follow reliably or to implement. A general disadvantage of all
these pheromone-inspired swarm navigation algorithms is that they crucially as-
sume that all robots move between two targets. Our algorithm can also work in
this situation, with properties that are similar to other swarm navigation methods;
in particular, it lets the swarm self-organize, and displays emergent shortest path
finding behavior, as shown in Section 4. However, it is also very general and usable
in a wide range of different situations. We have illustrated the single robot naviga-
tion task in Section 3, but many other different scenarios could easily be addressed
with this algorithm. One work that is somewhat similar to ours in the context of
the single robot navigation task, is pheromone robotics (Payton et al., 2001), where
robots spread out over an area and indicate the direction to a goal robot using
infrared communication. Compared to our work however, this approach requires
robots to adapt their movements to cooperate in the search for the target, and it
cannot deal with situations of sparse robot density (it requires the robots of the
swarm to form a connected network).

Finally, there are a number of cooperative swarm navigation algorithms that
do not implement pheromone-based navigation. Vaughan et al. (2002), propose
a method based on direct communication, partially inspired by the bee waggle
dance: robots inform each other about the way to a target by exchanging a list of
landmarks, in the form of waypoint coordinates. Like pheromone-based methods,
however, also this approach assumes that all robots of the swarm navigate back
and forth between two targets. Also in (Gutiérrez et al., 2010), robots use direct
communication to help each other navigate between a nest and a food source. Here,
the robots exchange the estimated position of targets (nest or food source), and a
robot searching a target can move directly towards the indicated location. How-
ever, since the only navigation information used are target locations, the method
would not be able to indicate obstacle-free paths in cluttered environments. Sperati
et al. (2011) address the collective navigation problem with neuro-evolution. In-
terestingly, they find a swarm level behavior that is similar to our dynamic chain,
though based on very different individual robot behavior (using visual feedback,
robots turn around in local dynamic chains; these chains merge and grow and
may eventually include the targets). However, this behavior was not designed to
generalize to scenarios that are radically different from the one for which it was
developed, namely a collective navigation scenario in an uncluttered environment.
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Finally, Schmickl and Crailsheim (2008) propose a navigation method inspired by
trophallaxis, which is the behavior of social insects to pass food to each other. In
this method, the food corresponds to navigation information, which is exchanged
through local direct communication. The authors evaluate their method in the
context of a foraging task performed by a large swarm of simulated robots. It is
not clear whether this method would be applicable in other contexts, such as the
single robot navigation task, or in small swarms, and whether it would be usable
on real robots.

7 Conclusions and future work

We have presented a navigation system for robotic swarms. It consists of a simple
and flexible algorithm that can be used in different contexts in which robots need
to collectively find navigation paths toward one or more locations in the environ-
ment, where the locations can represent sites associated to tasks or events to deal
with. We have studied in depth, both in simulation and using real robots, two
specific but at the same time paradigmatic scenarios. In the first one, we have
shown how the navigation algorithm allows robots of a swarm to guide a single
robot to a target location, without the need to adapt their own movements. In the
second scenario, we have investigated how the system can be used for collective
navigation between two targets, a common task in swarm robotics. We have shown
that cooperation improves navigation performance, and that when enough robots
are present, the swarm self-organizes into a dynamic structure that supports effi-
cient navigation and is robust to perturbations and robot failures. Moreover, we
have shown that collective navigation has a preference for short paths, similar
to pheromone mediated navigation in ant colonies. In tests with real robots, we
have shown the feasibility of the approach and the good correspondence between
simulation and real-world results.

In future work, we aim to investigate the performance of the current system in
more complex scenarios. Moreover we will investigate single robot navigation with
different, realistic robot movement patterns, and study the dynamic chain behavior
in complex cluttered environments. Future work will also include performing more
extensive tests with real robots to confirm all results from simulation. After that,
we will integrate this system in other scenarios of swarm deployment, e.g., where
the swarm performs tasks to support human activities. Many such scenarios require
navigation. Moreover, the swarm communication we use for navigation can be
extended to carry more information, e.g., for task allocation, planning, etc.
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Werger, B. B. and Matarić, M. J. (1996). Robotic food chains: Externalization of
state and program for minimal-agent foraging. In Proc. of the 4th Int. Conf. on the

Simulation of Adaptive Behavior (SAB), pages 625–634. MIT Press, Cambridge,
MA, USA.

Witkowski, U., El-Habbal, M., Herbrechtsmeier, S., Tanoto, A., Penders,
J., Alboul, L., and Gazi, V. (2008). Ad-hoc network communication
infrastructure for multi-robot systems in disaster scenarios. In Pro-

ceedings of the IARP/EURON Workshop on Robotics for Risky Interven-

tions and Surveillance of the Environment (RISE). (published online at
http://www.robot.uji.es/research/events/rise08).

Wodrich, M. and Bilchev, G. (1997). Cooperative distributed search: The ants’
way. Control and Cybernetics, 26:413–446.

Zhang, X., Neglia, G., Kurose, J., and Towsley, D. (2007). Performance modeling
of epidemic routing. Computer Networks, 51(10):2867–2891.


